Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease

نویسندگان

  • Eamon Dubaissi
  • Nancy Papalopulu
چکیده

Specialised epithelia such as mucociliary, secretory and transporting epithelia line all major organs, including the lung, gut and kidney. Malfunction of these epithelia is associated with many human diseases. The frog embryonic epidermis possesses mucus-secreting and multiciliated cells, and has served as an excellent model system for the biogenesis of cilia. However, ionic regulation is important for the function of all specialised epithelia and it is not clear how this is achieved in the embryonic frog epidermis. Here, we show that a third cell type develops alongside ciliated and mucus-secreting cells in the tadpole skin. These cells express high levels of ion channels and transporters; therefore, we suggest that they are analogous to ionocytes found in transporting epithelia such as the mammalian kidney. We show that frog ionocytes express the transcription factor foxi1e, which is required for the development of these cells. Depletion of ionocytes by foxi1e knockdown has detrimental effects on the development of multiciliated cells, which show fewer and aberrantly beating cilia. These results reveal a newly identified role for ionocytes and suggest that the frog embryonic skin is a model system that is particularly suited to studying the interactions of different cell types in mucociliary, as well as in secretory and transporting, epithelia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles.

The embryonic skin of Xenopus tadpoles serves as an experimental model system for mucociliary epithelia (MCE) such as the human airway epithelium. MCEs are characterized by the presence of mucus-secreting goblet and multiciliated cells (MCCs). A third cell type, ion-secreting cells (ISCs), is present in the larval skin as well. Synchronized beating of MCC cilia is required for directional trans...

متن کامل

A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis

The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell...

متن کامل

Dopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy

Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

Effect of tetraethylammonium and B vitamins group on the efficacy of cell replacement therapy in the treatment of Parkinson\'s disease in the 6-hydroxydopamine animal model

Introduction: Transplantation of embryonic ventral mesencephalic (VM) dopamine neurons into the striatum is a currently explored therapeutic strategy for treatment of patients with patients with Parkinson's disease (PD). However, this strategy has been limited with poor cell survival, generally ranging from 5-20%. In this study, we investigated the effect of potassium channel blocker of tetr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011